Polytec TC 451

Beschreibung

Polytec TC 451 ist ein keramisch gefülltes, zweikomponentiges, raumtemperaturhärten-des Epoxidharz mit sehr guter thermischer Leitfähigkeit.

Polytec TC 451 wird bevorzugt zum Wärmemanagement in Elektronik- und Elektrotechnikanwendungen eingesetzt.

Polytec TC 451 eignet sich für Vergussanwendungen sowie für thermisch leitfähige Verklebungen, die einen fließfähigen Klebstoff erfordern.

Polytec TC 451 zeichnet sich neben einer guten Haftung auf Metallen (Stahl, Aluminium, Buntmetalle), Keramik und vielen Kunststoffen durch eine sehr gute thermische und chemische Beständigkeit aus.

Die Applikation kann per Dispensen oder Handauftrag erfolgen.

Verarbeitung

- Bei zweikomponentigen Produkten sind die Komponenten A und B im ange-gebenen Mischungsverhältnis sorgfältig zu vermischen.
- Die Verarbeitung sollte nach Mischen der Komponenten zügig erfolgen, als Anhaltspunkt für die Verarbeitungszeit kann die Topfzeit herangezogen werden.
- Einkomponentige Produkte können direkt appliziert werden und unterliegen keiner Topfzeitbegrenzung (außer pre-mixed frozen Produkte).
- Bei gefüllten Produkten sollten beide Komponenten vor dem Vermischen durch Aufrühren homogenisiert werden, um einem möglichen Absetzen des Füllstoffs vorzubeugen.
- Oberflächen sollten frei von Schmutz, Fett, Öl und Flussmittelrückständen sein.
- Mindesthärtetemperaturen und –zeiten beachten.
- Bitte beachten Sie auch das jeweilige Sicherheitsdatenblatt.

Polytec TC 451
Thermisch leitfähiges Epoxidharz
Technische Daten

Polytec TC 451

Eigenschaften im flüssigen Zustand	Methode	Einheit	Technische Daten
Chemische Basis	-	-	Epoxid
Anzahl Komponenten	+	-	2
Mischungsverhältnis nach Gewicht	-	-	100:6
Mischungsverhältnis nach Volumen	-	-	-
Topfzeit bei 23°C	TM 702	min	30
Lagerstabilität bei 23°C	TM 701	Monate	12
Konsistenz	TM 101	-	Fließfähige Paste
Dichte Mischung	TM 201.2	g/cm³	2,00
Dichte A-Part	TM 201.2	g/cm³	2,15
Dichte B-Part	TM 201.2	g/cm³	0,95
Füllstoff	-	-	Aluminiumoxid
Max. Partikelgröße	-	μm	<50
Viskosität Mischung 84 s ⁻¹ bei 23°C	TM 202.1	mPa∙s	18 000
Viskosität A-Part 84 s ⁻¹ bei 23°C	TM 202.1	mPa∙s	-
Viskosität B-Part 84 s ⁻¹ bei 23°C	TM 202.1	mPa∙s	-

Eigenschaften im gehärteten* Zustand	Methode	Einheit	Technische Daten
Farbe	TM 101	-	Schwarz
Härte (Shore D)	DIN EN ISO 868	-	90
Betriebstemperatur max. dauerhaft	TM 302	°C	-55 / +180
Betriebstemperatur max. kurzfristig	TM 302	°C	-55 / +280
Zersetzungstemperatur	TM 302	°C	330
Glasübergangstemperatur (T _g)	TM 501	°C	105
Thermischer Ausdehnungskoeffizient (<tg)< td=""><td>ISO 11359-2</td><td>ppm</td><td>27</td></tg)<>	ISO 11359-2	ppm	27
Thermischer Ausdehnungskoeffizient ($>T_{\rm g}$)	ISO 11359-2	ppm	140
Thermische Leitfähigkeit	TM 502	W/m·K	0,8 ±0,1
Spez. el. Volumenwiderstand	DIN EN ISO 3915	Ω·cm	>1 · 10 ¹³
Elastizitätsmodul	TM 605	N/mm²	10 000
Zugfestigkeit	TM 605	N/mm²	71
Zugscherfestigkeit (Al/Al)	TM 604	N/mm²	14
Bruchdehnung	TM 605	%	0,9
Wasseraufnahme 24 h, 23°C	TM 301	%	0,1

^{*}Die Daten wurden an Proben ermittelt, die bei 150°C gehärtet wurden. Die Eigenschaften können durch die Wahl der Härtetemperatur z.T. beeinflusst werden.

Polytec TC 451

Härtung*	Methode	Einheit	Technische Daten
Mindesthärtetemperatur		°C	15
Härtezeit bei 23°C		h	24
Härtezeit bei 80°C		min	35
Härtezeit bei 100°C		min	25
Härtezeit bei 150°C		min	10
Härtezeit bei 180°C		S	-

^{*}Die Angaben beziehen sich auf die Temperaturen in der Klebefuge. Bei der Auswahl der jeweiligen Härtebedingungen müssen evtl. Aufheizraten der Substrate mit berücksichtigt werden. Je nach Härtemethode (Konvektionsofen, Thermode, Heizplatte, etc.) kann der Wärmeeintrag unterschiedlich schnell erfolgen.

Standardverpackungsgrößen:

250 g, 500 g, 1 kg, 25 kg

Kundenspezifische Konfektionierung

Zur Beachtung:

Vorstehende Angaben können nur allgemeine Hinweise sein. Bei den aufgeführten Eigenschaften und Leistungsmerkmalen handelt es sich um typische Werte, diese sind nicht Teil der Produktspezifikation. Wegen der außerhalb unseres Einflusses liegenden Verarbeitungs- und Anwendungsbedingungen und der Vielzahl unterschiedlicher Materialien empfehlen wir, in jedem Fall zunächst ausreichende Eigenversuche durchzuführen. Eine Haftung für konkrete Anwendungsergebnisse kann daher aus den Angaben und Hinweisen in diesem Merkblatt nicht abgeleitet werden. Mit Erscheinen dieser Ausgabe verlieren alle vorhergehenden technischen Merkblätter ihre Gültigkeit.

Änderungen vorbehalten

Polytec PT GmbH
Polymere Technologien

Polytec PT GmbH
Polymere Technologien
Betriebsstätte Maxdorf

Ettlinger Straße 30 76307 Karlsbad Deutschland Tel. +49 (0)7202 706-3500 Bahnhofstraße 1 67133 Maxdorf Deutschland

info-pt@bostik.com www.polytec-pt.de info-pt@bostik.com www.polytec-pt.de